Judit Csima
csima@cs.bme.hu

Big-Oh notation

1. Decide in all possible cases whether $f_{i}(n)=O\left(f_{j}(n)\right)$ is true or not if

$$
f_{1}(n)=11 n^{2}, \quad f_{2}(n)=8 n^{2} \log n, \quad f_{3}(n)=n^{2}+100000
$$

2. (a) Let's suppose that $f(n)=O\left(n^{2}\right)$ and $g(n)=\Theta\left(n^{3}\right)$. Is it true that $f(n)=O(g(n))$?
(b) Let's suppose that $f(n)=O\left(n^{3}\right)$ and $g(n)=\Theta\left(n^{2}\right)$. Is it true that $g(n)=O(f(n))$?
(c) Let's suppose that $f(n)=O\left(n^{3}\right)$ and $g(n)=O\left(n^{2}\right)$. Is it true that $g(n)=O(f(n))$? Is it possible that $f(n)=O(g(n))$?
3. Let's suppose that $f(n)$ and $g(n)$ are functions with non-negative values. Prove that

$$
\max (f(n), g(n))=\Theta(f(n)+g(n))
$$

4. Give a linear algorithm (ie. whose running time is $O(n)$) using only comparisons to find the maximum among n different numbers. What is the precise number of comparisons we have to perform to find the maximum?
